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Abstract: Objective: The study evaluates quantitative ultrasound (QUS) texture features with machine
learning (ML) to enhance the sensitivity of B-mode ultrasound (US) for the detection of fibrosis at
an early stage and distinguish it from advanced fibrosis. Different ML methods were evaluated
to determine the best diagnostic model. Methods: 233 B-mode images of liver lobes with early
and advanced-stage fibrosis induced in a rat model were analyzed. Sixteen features describing
liver texture were measured from regions of interest (ROIs) drawn on B-mode images. The texture
features included a first-order statistics run length (RL) and gray-level co-occurrence matrix (GLCM).
The features discriminating between early and advanced fibrosis were used to build diagnostic
models with logistic regression (LR), naïve Bayes (nB), and multi-class perceptron (MLP). The
diagnostic performances of the models were compared by ROC analysis using different train-test
sampling approaches, including leave-one-out, 10-fold cross-validation, and varying percentage
splits. METAVIR scoring was used for histological fibrosis staging of the liver. Results: 15 features
showed a significant difference between the advanced and early liver fibrosis groups, p < 0.05. Among
the individual features, first-order statics features led to the best classification with a sensitivity of
82.1–90.5% and a specificity of 87.1–89.8%. For the features combined, the diagnostic performances
of nB and MLP were high, with the area under the ROC curve (AUC) approaching 0.95–0.96. LR
also yielded high diagnostic performance (AUC = 0.91–0.92) but was lower than nB and MLP. The
diagnostic variability between test-train trials, measured by the coefficient-of-variation (CV), was
higher for LR (3–5%) than nB and MLP (1–2%). Conclusion: Quantitative ultrasound with machine
learning differentiated early and advanced fibrosis. Ultrasound B-mode images contain a high level
of information to enable accurate diagnosis with relatively straightforward machine learning methods
like naïve Bayes and logistic regression. Implementing simple ML approaches with QUS features in
clinical settings could reduce the user-dependent limitation of ultrasound in detecting early-stage
liver fibrosis.

Keywords: liver fibrosis; quantitative ultrasound; radiomics; machine learning; deep learning

1. Introduction

Liver fibrosis is a major health problem that, if not treated, leads to advanced liver
cirrhosis and hepatocellular carcinoma (HCC) [1,2]. Cirrhosis accounts for more than
44,000 deaths in the United States and 2 million deaths worldwide yearly [3]. The disease is
associated with a high burden of disability and increased healthcare utilization. Therefore,
diagnosing liver fibrosis in its early stages can significantly improve a patient’s chance
of making a full recovery. The damage may be limited and reversible in early-stage
fibrosis compared to advanced fibrosis, which causes widespread, irreversible damage that
eventually leads to cirrhosis.

Biopsy remains the gold standard for diagnosing liver fibrosis and assessing disease
severity [4,5]. However, its use is invasive, and sampling and interpretative variations
influence the results [5,6]. The development of biomarkers has evolved as an attractive
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alternative to liver biopsy. They include direct biological markers reflecting the patho-
physiology of liver fibrogenesis and indirect biomarkers consisting of routine laboratory
data reflecting the consequences of liver damage [7]. While helpful, a potential drawback
of these biomarkers is the lack of specificity in discriminating inflammation from hep-
atocellular injury, which often leads to low accuracy in detecting early or intermediate
fibrosis stages compared to cirrhosis [8–10]. Imaging biomarkers from conventional MRI
and computer tomography (CT) are routinely used to assess cirrhosis and its complications.
Both modalities, however, are costly and time-consuming, and the discrimination of early
and advanced stages of fibrosis remains challenging [11].

Ultrasound (US) is widely used in diagnosing patients with suspected liver disease. It
is highly accurate, relatively inexpensive, noninvasive, and valuable in assessing morpho-
logical and structural changes associated with liver disease [12,13]. US has the capacity to
evaluate hepatic parenchyma concurrently with ascites, hepatic masses, or other abdominal
indications and to image a large liver volume with reduced sampling error [14]. B-mode
ultrasound has been the primary imaging modality in assessing patients with nonalcoholic
fatty liver disease (NAFLD) [15]. It is an excellent method to detect moderate and severe
steatosis but has low sensitivity for detecting mild steatosis. Hepatorenal index (HRI) and
quantitative ultrasound methods based on attenuation parameters improve the identifi-
cation of patients with mild steatosis [15]. Patients with NAFLD cirrhosis, on the other
hand, present liver changes such as a nodular liver surface, inhomogeneous parenchyma,
a rounded inferior border of the liver, a hypertrophic left liver lobe, and changes in the
liver vessels’ borders [16–19]. These changes can also be observed with B-mode US [20].
Despite these capabilities of ultrasound, its role in the diagnosis and staging of liver fi-
brosis continues to be a subject of debate [21–23]. Limitations of this technique include
its operator-dependent nature. The interpretation of liver ultrasound images varies with
ultrasound equipment, image quality, and physical differences among patients. For the
diagnosis of liver cirrhosis, the typical findings have a high specificity (82–100%) but a low
and variable sensitivity (20–91%) [23]. Therefore, there is a need for an objective approach
for assessing this stage of the disease with ultrasound.

In this study, we propose using computerized analysis of liver features on B-mode
ultrasound (US) to characterize liver fibrosis with high precision. Prior studies on hepatic
fibrosis have primarily assessed qualitative structural changes on ultrasound that are
visible [20–23]. It is hypothesized that computerized ultrasound image analysis provides
liver fibrosis assessment on a continuous scale of user-independent quantitative imaging
biomarkers. The main contribution of the study is the differentiation of early- and late-
stage liver fibrosis with quantitative US image texture features and machine learning. The
study also emphasizes easy-to-use, simple methods of ML for diagnosis. The study was
performed in a rat model with fibrosis induced under controlled experimental conditions.
Different machine learning methods were evaluated to determine the ultrasound radiomics
models for diagnosis to achieve high sensitivity and specificity.

2. Materials and Methods
2.1. Image Acquisition

Forty-five male Wistar rats (procured at 350–400 g body weight from Charles River
Laboratories) were acclimated in the housing facilities for one week. Thirty-four rats were
fed 0.01% diethylnitrosamine (DEN) (Sigma Aldrich, St. Louis, MO, USA) in their drinking
water and ingested ad libitum for 12 weeks to induce fibrosis [24,25]. Eleven rats were not
fed DEN in their drinking water as a control group. At the end of the experiments, the rats
were euthanized. An autopsy was performed, and tissues from lobes on the right and left
sides of the liver were harvested for histologic examination. The University’s Institutional
Animal Care and Use Committee approved animal studies and protocols.

Four to six B-mode images were acquired using Visualsonics VevoLAZR (Fujifilm,
Toronto, ON, Canada). The ultrasound images were acquired following the termination
of DEN administration to the rats. During the experiments, the rats were placed supine
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under inhalational isoflurane vaporizer anesthesia (VetEquip Inc., Livermore, CA, USA)
and oxygenated by a nose cone. Imaging presets (gain = 18 dB, high sensitivity, 100%
power, transmit frequency of 21 MHz, and high line density) and time compensation gains
were optimized and standardized.

2.2. Histopathological Assessment

The necropsy samples from the right and left liver lobes were preserved in 10% phosphate-
buffered formalin for 48 to 72 h. The samples were processed for histological examination
using hematoxylin and eosin (H&E) and trichrome staining. The slides were examined for
fibrotic changes under a microscope (Olympus BX51, Olympus America Inc., Melville, NY,
USA). Each histologic section was graded according to the METAVIR scoring system for
hepatic fibrosis by a veterinary pathologist: F0, no fibrosis; F1, portal fibrosis without septa
(mild); F2, portal fibrosis with rare septa (moderate); F3, numerous septa without cirrhosis
(severe); and F4, cirrhosis.

2.3. Computerized Analysis

The computerized analysis is a multistep process consisting of image analysis, feature
extraction, and diagnostic modeling (Figure 1).
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Figure 1. Schematic representation of the image and data analysis process. Subfigure (A) shows the
image analysis process which includes region of interest ( ROI) placement on the selected liver images.
Subfigure (B) shows the feature extraction from the selected liver ROIs. Features extracted include:
first order statistics and computerized texture features. These features are then further selected
by t-test, for building the predcitive model. Subfigure (C) demsontrate the different steps towards
building the predtive diagnostic model, consisting of: training the data set by different classfiers
and with different data spitting methods, then applying these methods for testing the diagnostic
performance of data.

Image analysis: A total of 233 images, including 184 from the fibrosis group and 49 from
the control group, were analyzed offline using an IDL platform [26,27]. Five to six regions
of interest (ROI) were manually outlined to include multiple representative samples of the
liver parenchyma and exclude imaging artifacts (Figure 1A).

Feature extraction: Sixteen quantitative image features describing the liver tissue were
measured for each region (Figure 1B). These features defining the distributions and rela-
tionships between the gray levels of image pixels [28–31] included first-order statistics,
run-length features, and grayscale connectivity (co-occurrence matrix).
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• First-order statistics features included echo intensity (brightness level), heterogeneity
(local variance in gray levels within ROIs), kurtosis, and skewness. Echo intensity and
heterogeneity features were computed directly from the pixels’ mean intensity and
standard deviation within the region of interest.

• Run-length features included short-run emphasis, long-run emphasis, gray-level
nonuniformity, run percentage, and run-length nonuniformity. A gray level run is
a set of consecutive, collinear picture points having the same gray level value. The
length of the run is the number of pixels in the run.

• Gray-level co-occurrence matrix (GLCM) included GLCM mean, GLCM variance, GLCM
correlation, entropy, contrast, dissimilarity, and angular second momentum (ASM).

Features selection: The computed values for all features were averaged over all images
and shown as mean ± standard deviation. A two-tailed t-test was used to determine
differences between the early (METAVIR scores of F0–1) and significant (METAVIR scores
of F2–4) fibrosis groups. A p-value < 0.05 was considered statistically significant (Figure 1B).

Diagnostic model building by machine learning: Three methods, including logistic re-
gression, naïve Bayes, and multilayer perceptron were used to construct diagnostic models
(Figure 1C). Weka software for machine learning was used for ML analysis [32]. Logistic
regression determines the impact of multiple independent variables presented simulta-
neously to predict membership in one or other of the two dependent variable categories,
which in this case were early and late fibrosis [33]. The probability of late fibrosis was deter-
mined using the maximum likelihood method. The naive Bayes classifier greatly simplifies
learning by assuming that features are independent. Although independence is generally
a poor assumption, in practice, naive Bayes often competes well with more sophisticated
classifiers [34]. Multilayer perceptron is an advanced machine learning approach in which
the network is multilayered and consists of a system of simple, interconnected neurons, or
nodes involving nonlinear mapping between input and output vectors [35].

2.4. Data Train-Test Splitting for Machine Learning

In developing ML models, it is desirable that the trained models perform well on
new, unseen data. Different training-testing data sampling approaches were tested for the
consistency of the ML models. They included leave-one-out n-fold cross-validation and
percentage proportions. In leave-one-out (round robin), n − 1 samples (n = number of
cases) were trained to predict the probability of malignancy for the remaining nth samples.
The process was repeated n times to predict every case. This approach ensures that test
cases are always left out of training while training occurs on the most data available. In
10-folds cross-validation, the data set was divided into 10 equal sets without overlaps.
Then, at the first run, sets (1–9) were used for training and developing a model, and the
model was used on set 10 to get the performance. Next, sets 1–8 and set 10 were used for
training to develop a model to test the performance on set 9. The process was repeated
until each fold was used once as a test set to evaluate performance.

In the percentage-split method, the training-testing data was split based on percentage.
A testing-training percentage split of 50:50, 60:40, 70:30, and 80:20 was used for building
and evaluating the ML model. Each percentage split was repeated three times by random
sample selection.

2.5. Evaluating the Diagnostic Performance by Different Machine Learning Methods

The class attribute predicted by the model was diagnosis 1 for advanced fibrosis and
0 for early fibrosis. The output probabilities of fibrosis ranged from 0 to 1. The machine-
learning methods logistic regression, naïve Bayes, and multilayer perceptron were used to
construct diagnostic models (Figure 1C).

The area under the ROC curve (AUC) and the sensitivity and specificity for each
ROC curve were used to evaluate each ML model’s diagnostic performance. Sensitivity is
defined as the percentage of elements correctly classified in class 1 (True Positive (TP)) to
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all elements labeled in class 1 (True Positive (TP) + False Negative (FN)) and it is calculated
as follows:

Sensitivity = TP/(TP + FN) (1)

Specificity is defined by the percentage of elements classified correctly in class 2 (True
Negative (TN)), in comparison with all other elements in class 2 (True Negative (TN) False
Positive (FP)), and it can be presented as follows:

Speci f icity = TN/(TN + FP) (2)

The coefficient of variation (CV) of AUC between trials was used to assess the vari-
ability in the diagnostic performance of each ML method. The coefficient of variation is
defined as the ratio of the standard deviation of the AUC and its mean.

3. Results
3.1. The Classification Performance of Individual Quantitative Ultrasound Features

Of the 16 features extracted from liver ultrasound images, 15 showed statistically
significant differences (p < 0.05) between early and advanced fibrosis. Features normalized
to the maximum-minimum range are shown in Figure 2. All first-order histogram features
showed a statistical difference between the two groups. The most significant differences
observed were in echo-intensity and heterogeneity (56.8 ± 10.2 and 22.5 ± 2.9) for advanced
fibrosis versus 35.7 ± 9 and 16.9 ± 2.6 for early-stage cases, p-value < 0.05. Kurtosis and
skewness features also discriminated between the two groups (p-value < 0.05), with values
of 0.3 ± 0.2 and 0.6 ± 0.1 for advanced fibrosis versus 1.9 ± 1.6 and 0.9 ± 0.6 for early-stage
fibrosis. Except for the contrast feature, all the gray-level co-occurrence matrix features
showed a statistical difference, p < 0.05 (Table 1). Among the run length features, all features
showed a statistical difference (p < 0.05).
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nonuniformity, R%: run percentage, AM: angular second momentum, CT: contrast, DS: dissimilarity,
ET: entropy; GM: gray-level mean, GV: gray level variance, GC: gray-level correlation. * denotes
statistical significance, p-value < 0.05.
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Table 1. The mean and standard deviation of the ultrasound texture features of early fibrosis com-
pared to advanced liver fibrosis. GLNU: gray-level nonunformity; RLNU: run length nonuniformity;
ASM: Angular second momentum; GLCM: gray level mean; GLCV: gray level variance; GLCC: gray
level correlation.

First Order Statistics
Early Fibrosis Advanced Fibrosis p-Value

Echo-intensity 35.7 ± 9.0 56.8 ± 10.2 0.00
Heterogeneity 16.9 ± 2.9 22.5 ± 2.6 0.00

Kurtosis 1.9 ± 3.6 0.3 ± 0.6 0.00
Skewness 0.9 ± 0.2 0.2 ± 0.0 0.00

Run Length Features
Early Fibrosis Advanced Fibrosis p-Value

Short run 0.3 ± 0.0 0.2 ± 0.0 0.00
Long run 15.3 ± 1.6 12.2 ± 1.5 0.00

GLNU 0.3 ± 0.0 0.2 ± 0.0 0.00
RLNU 0.3 ± 0.0 0.2 ± 0.0 0.00
Run % 0.3 ± 0.1 0.7 ± 0.2 0.00

Gray-Level Co-Occurrence Features
Early Fibrosis Advanced Fibrosis p-Value

ASM 0.1 ± 0.0 0.4 ± 1.1 0.00
Contrast 3.6 ± 0.0 3.7 ± 0.7 0.43

Dissimilarity 1.4 ± 0.1 1.7 ± 0.6 0.00
Entropy 3.3 ± 0.1 3.4 ± 0.3 0.00
GLCM 2.1 ± 0.2 146.0 ± 43.6 0.00
GLCV 1075.8 ± 216.6 1383.0 ± 512.7 0.00
GLCC 0.0 ± 0.0 0.1± 0.00

The sensitivity and specificity of the individual features for detecting early and ad-
vanced fibrosis are summarized in Table 2. The first-order statistics showed high sensitivity,
ranging from 82.1% to 90.5%, and specificity, ranging from 87.1% to 89.8%. Run-length
features showed a broader range of variation, from a high sensitivity of 96% for some
features to a lower sensitivity of 67.5%. Similarly, specificity also varied from 71.9% to
100%. The sensitivity and specificity of the GLCM features are 61.6% to 83.3% and 84.4% to
100%, respectively.

Table 2. The diagnostic performance of the ultrasound texture features in detecting early and
advanced liver fibrosis.

GLCM
Features Sensitivity Specificity Run Length

Features Sensitivity Specificity First Order Histogram
Features Sensitivity Specificity

ASM 65.9% 100% Short run
length 96% 71.9% Echo-intensity 90.5% 87.5%

GLCM mean 83.3% 87.5% Long run
length 82.5% 87.5% Heterogeneity 88.1% 87.5%

GLCM
variance 71.4 % 93.7% Run length

nonuniformity 72.2% 93.7% Kurtosis 82.6% 87.1%

GLCM
correlation 71.4 % 87% Gray level

nonuniformity 67.5% 100 % Skewness 82.1% 89.8%

Entropy 61.1% 100% Run
Percentage 80.4% 70.2%

Contrast 73.8% 84.4%
Dissimilarity 72.3% 91.8%

3.2. The Classification Performance of Combined Ultrasound Features with Machine Learning
3.2.1. The Impact of Train-Test Data Sampling on the Diagnostic Performance of ML

The effects of different sampling approaches on the performance of the ML methods
are compared in Table 3. The leave-one-out cross-validation approach showed better
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performance for LR with an AUC of 0.95 than that of 10-fold (AUC = 0.90). A similar
performance was observed with nB and MLP.

Table 3. The effect of train-test sampling on the diagnostic performance (AUC) on different ML
models. LR: logistic regression, Nb: naïve bayes, MLP: multilayer perceptron.

Train-Test
Method LR Nb MLP

Leave-One-Out 0.95 0.94 0.95
10-fold 0.90 0.94 0.96

Percentage split
50–50%

Trial 1 0.88 0.94 0.96
Trial 2 0.92 0.96 0.96
Trial 3 0.87 0.95 0.95
Trial 4 0.96 0.96 0.98
Trial 5 0.94 0.94 0.94
Mean 0.91 0.95 0.96
STD 0.04 0.01 0.01
CV 4% 1% 2%

Percentage split
60–40%

Trial 1 0.90 0.94 0.96
Trial 2 0.87 0.96 0.97
Trial 3 0.91 0.94 0.94
Trial 4 0.94 0.95 0.97
Trial 5 0.93 0.95 0.95
Mean 0.91 0.95 0.96
STD 0.03 0.01 0.01
CV 3% 1% 1%

Percentage split
70–30%

Trial 1 0.86 0.94 0.95
Trial 2 0.89 0.94 0.95
Trial 3 0.92 0.96 0.96
Trial 4 0.94 0.98 0.99
Trial 5 0.96 0.97 0.97
Trial 1 0.86 0.98 0.99
Mean 0.92 0.96 0.96
STD 0.4 0.2 0.2
CV 4% 2% 2%

Percentage split
80–20%

Trial 1 0.86 0.98 0.99
Trial 2 0.83 0.98 0.97
Trial 3 0.99 0.95 0.94
Trial 4 0.92 0.96 0.99
Trial 5 0.97 0.95 0.93
Mean 0.91 0.95 0.96
STD 0.04 0.01 0.02
CV 5% 1% 2%

For the test-train percentage split approach, 50:50 % and 60:40% showed a higher
performance and lesser variability between different trials (Table 3). A broader variation in
AUC was observed with a 70–30% test-train percentage split. This pattern was particularly
noticeable for LR, with AUC ranging between 0.86 to 0.96 for different trials. NB and
MLP also showed similar behavior but with less variability between trials, with AUC
ranging from 0.94 to 0.98 for nB and 0.95 to 0.99 for MLP. The variability in AUC was
more prominent when using a larger test sample (80:20%) for LR, ranging from 0.83 to 0.97.
Similarly, nB and MLP showed the same pattern but with less variability, with 0.95–098
and 0.93–0.99, respectively.

3.2.2. Comparison of the Diagnostic Performance of the Machine Learning Models

The diagnostic performance for naïve Bayes and MLP was higher and more consistent
than that of logistic regression (Table 3). Performance ranged from 0.95–0.96 for nB and
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0.95–0.96 for MLP, while LR showed a lower performance ranging from 0.91–0.92. The
coefficient of variation for different trials had more variability with LR (CV 3–5%, Table 2).
nB and MLP showed lesser variability (CV 1–2%, Table 3).

4. Discussion
4.1. Quantitative Ultrasound Features Can Distinguish Early and Advanced Fibrosis

Liver fibrosis is associated with the disrupted architecture of the liver tissue. Con-
nective tissue fibers in the form of wide or narrow stripes divide the liver parenchyma
into pseudocopula of unequal size and irregular shape. However, these subtle changes
cannot be distinguished with high accuracy by visual observation of ultrasound images.
Earlier studies have suggested a significant potential for quantitative ultrasound (QUS) to
complement conventional B-mode for liver diseases [36]. QUS imaging techniques have
been described in the literature for their potential to analyze echo interferences based on
radiofrequency signals or statistical properties of the echo features [37]. However, until
recently, the use of QUS for studying liver fibrosis has been limited, and most studies have
evaluated it for assessing liver steatosis [38,39]. In this study, we evaluate QUS features
for assessing liver fibrosis. The results showed that 15 of 16 features exhibited statistical
differences and could discriminate between early and advanced fibrosis. Brightness (echo
intensity) has been reported to increase with steatosis [40]. In this study, US echo intensity
increased with steatosis-free fibrosis confirmed by histology. In addition to echo-intensity,
the variance measure, heterogeneity, also increased in advanced fibrosis cases. These in-
creases are likely due to collagen septae formation, as reported previously [41]. The acoustic
impedance difference between fibrotic tissue and hepatocytes increases due to the larger
number of acoustic interfaces in fibrotic tissue [41]. This change leads to the observed coarse
and echogenic pattern, with the regional variation dependent on collagen septae presence
or absence to scatter US waves. Our study showed that the changes in the quantified
liver image texture could distinguish between early and advanced liver fibrosis with high
accuracy. Quantitative studies on liver fibrosis by texture analysis of ultrasound images are,
to date, limited and have only recently been reported [42,43]. Park et al. evaluated image
texture analysis for staging of hepatic fibrosis [42]. Of the various first- and second-order
features based on the gray-level histogram and co-occurrence matrix (GLCM) studied, the
standard deviation showed a significant difference between significant and mild fibrosis.
The study also found that skewness and kurtosis increased with the progression of fibrosis,
indicating increased heterogeneity of the liver parenchyma. Zhou et al. [43] proposed a
new method for liver fibrosis characterization by using radiomics of ultrasound backscatter
homodyned-K imaging. The study showed their approach to be superior to the radiomics
of uncompressed envelope images, concluding that radiomics can increase the ability of
ultrasound backscatter statistical parameters for evaluating liver fibrosis.

4.2. Constructing the Best Machine Learning Models Using Different Classifiers

ML techniques have emerged as a potential tool for prediction and decision-making
in many disciplines. Developing a machine learning model would be a valuable aid in
identifying cirrhosis and making effective clinical decisions in real-time. We evaluated three
different ML classifiers: logistic regression, naïve Bayes, and neural networks represented
by a multilayer perceptron. Each method has its strengths and weaknesses. The reason
for using multiple ML methods is to compare their relative diagnostic performances and
determine the best diagnosis model. The study results showed that all three algorithms,
naïve Bayes, logistic regression, and multilayer perceptron, performed well. However, nB
and MLP achieved better performance and lower variability than logistic regression. The
aim is to construct a simple model that captures a pattern representative of the population
but excludes the inherent noise in the training data. Our results showed that using a model
as simple as nB with LOO or 10-fold cross-validations can produce high and consistent
performance in detecting liver fibrosis with ultrasound. The results show that complex
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models representing a nonlinear mapping between input and output vectors, like those in
multilayer perceptron did not provide significant benefit.

Table 4 compares machine learning algorithms for liver disease diagnosis [44–52].
In the current study, a high level of diagnostic performance was observed. A factor
contributing to such high performance could be the controlled setting of experiments where
high frequencies were used for imaging and image parameters were fixed throughout
the study. These practices, if translated into clinical studies, could help in improving the
diagnostic performance of the US for grading the extent of fibrosis.

Table 4. Literature review of the use of ML for liver disease diagnosis.

Study Goal-Standard
Reference Sample Size ML Classifier (s) Results Notes

Byra et al. [44] Liver biopsy
55 patients with severe

obesity, 38 of whom had
fatty liver disease

Deep learning

Sensitivity: 100%;
specificity: 88%;
accuracy: 96%;

AUC: 0.98

NAFLD-fatty liver

Redyy et al. [45] Radiologist
qualitative score

157 B-mode ultrasound
liver images from

unknown number of
participants

Deep learning

Sensitivity: 95%;
specificity: 85%;
accuracy: 90.6%;

AUC: 0.96

NAFLD-fatty liver

Han et al. [46]

MRI proton
density fat

fraction(>5% hep-
atic fat

content)

204 participants, 140 of
whom had NAFLD,

64 control participants

One-
dimensional

CNNs

Sensitivity: 97%;
specificity: 94%;
accuracy: 96%;

AUC: 0.98

- Prospective study
of NAFL/steatosis
cases

- Ultrasound data
were acquired from
a single scanner
platform by one
physician.

Byral et al. [47]

MRI proton
density fat

fraction(>5%
hepatic fat

content)

135 adult participants
with known or suspected

NAFLD

Transfer learning
with a pretrained

CNN by four
ultrasound views
of liver routinely

obtained

SCC: 0.81; AUC: 0.91
(PDFF ≥ 5%) NAFLD/fatty liver

Cha et al. [48] Liver biopsy
295 subjects, 198 mild

fatty liver, one moderate
degree of fatty liver

DCNN-based
organ

segmentation
with Gaussian

mixture
modeling for
automated

quantification of
the HRI

ICC of two radiologists
and DCNN were 0.919,

0.916, and 0.734

- Retrospective
study, composed of
subjects who were
donors for liver
transplantation.
This would have
led to selection bias

- Image data only
included several
major US machine
vendors; the
algorithm may not
work effectively
with US images
from machines
made by other
manufacturers.

Chou et al. [49] Abdominal
ultrasound

21855 B-mode ultrasound
images, 2070 patients

with different severities
from none to severe

fatty liver

Pretrained CNN
models

The areas under the
receiver operating

characteristic curves
were 0.974 (mild

steatosis vs. others),
0.971 (moderate

steatosis vs. others),
0.981 (severe steatosis
vs. others), 0.985 (any
severity vs. normal),

and 0.996 (moderate-to-
severe steatosis

clinically abnormal vs.
normal-to-mild

steatosis
clinically normal)

- Inconsistent quality
of the images in
this study might
have caused
several biases.

- Some of the images
came from
different types of
US machines.
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Table 4. Cont.

Study Goal-Standard
Reference Sample Size ML Classifier (s) Results Notes

Kuppili et al. [50] Liver biopsy (not
defined)

Adapting four types of
K-fold cross-validation

(K = 2, 3, 5 and 10)
protocols on three kinds
of data sizes: S0-original,

S4-four splits,
S8-sixty-four splits (a
total of 12 cases), and
46 types of grayscale

features,

ELMa, SVM

Using the K10
cross-validation

protocol, ELM showed
an accuracy of

96.75% compared to
89.01% for SVM, and
correspondingly, the
AUC: 0.97 and 0.91,

respectively

Retrospective study, all
NAFLD cases no steatosis

Biswas et al. [51] Liver biopsy (not
defined)

Support vector machine
(SVM) and extreme

learning machine (ELM)
results. The liver US data

consists of 63 patients
(27 normal/36 abnormal).

Using the K10
cross-validation protocol

(90% training and
10% testing)

CNNa, SVM,
ELM

Detection and risk
stratification accuracies

are: 82%, 92%, and
100% for SVM, ELM,

and DL systems,
respectively. The

corresponding area
under the curve is: 0.79,

0.92, and 1.0,
respectively.

- Retrospective
study all NAFLD
cases no steatosis

- The systems take
longer convergence
time unlike ELM,
which only has
single layer.

Zamanian
et al. [52]

Liver biopsy
(>5% hepatocyte

steatosis)

55 patients with
fatty liver.

CNN + SVM We
implemented
pre-trained

convolutional
neural networks

of Inception-
ResNetv2,

GoogleNet,
AlexNet, and
ResNet101 to

extract features
from the images

and after
combining these
resulted features.

The area under the
receiver operating

characteristic curve
(AUC) for the

introduced combined
network resulted

in 0.9999.

Prospective study,
50% steatosis cases

4.3. The Effects of the Data Splitting Approach on ML Model Performance

The study shows nonequivalent data splits with larger testing sets, like 70:30% and
80:20%, had weaker performance and more variability than equal splits or n-fold cross-
validations. These results show that the data split alone in testing and training can induce
statistically significant variation. Larger variations are expected when using split validation
techniques compared to the more rigorous validation techniques [53]. It was reported that
more computationally expensive techniques, like cross-validation, provide higher precision
and stability. Our results agree with the literature from this perspective. There is a strong
relationship between sample size and reported performance because ML models are biased
to produce under or overly optimistic results when a small sample is used for training. In
supervised learning, the ideal model is expected to estimate the training data regularities
and take a broad view of unseen new data. However, when the training data contains noise,
it may not be representative of the population. In this case, it is unlikely that the model
would be able to approximate the data regularities.

A potential limitation of the study is the lack of independence between the sequential
images acquired from the same subject. This approach, which is used extensively in the
literature [54] is aimed at increasing the sample size for ML-based analyses. In this study,
images were acquired from different parts of the liver and in diverse planes to minimize the
effect of data independence. The study was performed under a controlled imaging protocol
with fixed experimental settings. Clinical studies are often performed with variable imaging
scanners, settings, and protocols. These factors contributing to the diagnostic variability in
clinical settings were not a part of the current study.

5. Conclusions

This study evaluated the use of QUS features with ML methods to build a reliable
model for detecting early and advanced liver fibrosis. QUS showed high discrimination
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between early and advanced fibrosis. Comparing the three ML methods, nB and MLP
showed better and more consistent performance when compared to logistic regression.
Implementing simple ML approaches with QUS can achieve high performance in detecting
liver fibrosis and thus improves US sensitivity. More complex methods like MLP also
yielded high performance but no significant improvement over simpler methods. Future
larger studies with clinical image data using further standardization of ROI selection by
automation, can help to minimize the user-dependent variability and increase the sensitivity
of clinical ultrasound for assessing liver fibrosis without needing biopsies.
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